宝视来
明基
鸿合
当前位置:中国数字视听网首页 > 其他 > 综述 > 正文
快速搜索:

海康威视:大数据助力安防行业发展

——大数据助力安防行业发展
2014年07月31日 14:19  来源:中国数字视听网  字体【   

【中国数字视听网讯】在安防行业,大数据的相关技术正在不断渗入,同时也涌现了一些大数据相关的应用及产品,这预示着安防行业的大数据时代将逐渐拉开帷幕。总体来看,当前安防行业的大数据还处于起步阶段,面临着包括技术、业务、体制、标准化等方面的诸多问题,在未来的发展中,需要逐步解决这些问题,才能使大数据的优势体现得越来越明显,才能使大数据发挥更大的价值,使安防行业的竞争力得到质的提升。

关键词:大数据智能分析

一、什么是大数据?

关于大数据的定义,当前不同的行业有不同的声音。有人说,大数据是量特别大的数据,以前是TB级别,现在是PB级别;也有人说,大数据是以Hadoop为代表的新技术,它能够处理海量的数据。这几种说法都显得有些片面,一个强调数据,一个强调技术。麦肯锡对大数据定义了“4V”特征,同时对大数据作出定义:“大数据是指数据集的大小超过了现有典型的数据库软件和工具的处理能力,与此同时,及时捕捉、存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预测计算芯片增长速度的摩尔定律一样。”麦肯锡的定义涵盖了数据和技术,然而,随着大数据的发展,这样的定义也无法完全诠释大数据的内涵。我们说,大数据不仅有数据,有技术,更重要的是它能够提供更好的服务。大数据能够对海量的数据进行深度关联分析,进而对事物的发展趋势作出预测,这也是大数据的核心所在,大数据能够将数学算法运用到海量的数据上来预测事情发生的可能性。

《大数据时代》一书指出:大数据的精髓在于我们分析数据时的三个转变,这些转变将有助于我们对大数据的深入理解。

1、在大数据时代,我们可以分析数据的全集,而非数据的采样。数据的量变可以产生质变,同时可以弥补算法带来的不足。且看以下案例,在Word程序的语法检查中,有一种简单的算法,当数据量只有500万时,该算法表现很差,但当数据量达到10亿级别时,该算法的表现最优异;相反,有一种复杂的算法,在500万数据量时表现最好,但在10亿级别数据量时效果不如简单的算法。

2、大数据下的数据如此之多,以至于我们不再热衷于追求精确度。在信息缺乏的时代,我们往往追求数据的精确度;在大数据时代,数据量如此之大,数据种类如此繁多,我们无法保证每个数据都是精确的,然而只要保证大部分的数据是精确的,就不会影响分析结果的可靠性。

3、在大数据时代,我们更加关心相关关系,而非因果关系。沃尔玛的分析系统发现,啤酒与尿布的销售量存在一定的相关关系。根据分析结果,沃尔玛将尿布和啤酒这两种风马牛不相及的商品摆在一起,结果神奇地发现尿布和啤酒的销量都增加了。原来,美国的妇女通常在家照顾孩子,所以她们经常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。在这个案例中,我们找到了它的原因,但更多时候,我们找不到原因,而实际上我们也无需去关心它的原因,因为从相关关系的分析结果中,我们就能从中获益。

二、大数据发展现状

大数据是时下最热的一门技术,2012年,科技部的《中国云科技发展“十二五”专项规划》和工信部的《物联网“十二五”发展规划》都将大数据技术作为一项重点予以支持。

在IT领域,大数据的发展已相当成熟。如Google公司利用超过30亿条用户的指令成功预测流感的传播,利用上万亿的语料库为用户提供相对精确的翻译;亚马逊根据以往的信息预测用户感兴趣的书籍;淘宝根据用户的购物行为精确地推送广告;等等。

然而,在安防领域,大数据还处于萌芽和探索阶段。

首先,安防行业正在逐渐进入大数据时代。随着城市进程的不断发展,信息化建设的不断深入,数据正在以几何级的速度快速增长,传统的系统或工具已无法有效处理如此海量的数据。比如,交通卡口数据,以前是千万条级别,现在的情况是:一个区县一年的卡口数据能够达到十亿级别,一个地级市一年的卡口数据甚至能够达到百亿级别,一个省的数据就更大了,面对如此庞大的数据,传统的系统显得束手无策,即使一条简单的查询命令,响应时间也会变得非常慢,更不要说分析、统计等功能了。同时,越来越多的用户对大数据提出了更高的要求,比如公安用户,他们掌握了大量的数据,类型繁多,数据量大,他们要求能够通过海量数据的分析,达到预测预警的作用,进而能够将公安业务从事后分析向事前预测转变。

其次,一些安防企业正在接触大数据,并有了初步的探索和应用。早在2012年,海康威视就涉足大数据,基于Hadoop进行开发优化并推行大数据解决方案,满足海量数据高效处理的要求。当前,海康威视基于大数据技术的产品有:视频云存储,能够满足100PB数据的存储;视频图像信息数据库,能够针对海量的案事件数据进行快速检索;交通卡口大数据平台,能够针对海量的卡口数据进行快速检索、智能研判、统计分析,部分研判功能可用于刑事案件的侦察及预警。此外,像博康、宇视等安防企业,也在迎头赶上大数据的发展步伐。

三、安防大数据核心技术分析

IT领域的大数据发展已相当成熟,其中的许多技术可以借鉴运用到安防领域中。但是,安防行业存在与IT行业不一样的地方,主要是数据的类型。在IT行业中,大数据的分析对象往往是日志、用户行为信息、网页索引等数据,是计算机可以识别的结构化数据;而安防行业中,大数据需要分析的对象主要是视频、图片、音频等非结构化数据,计算机无法直接对这些数据进行分析,而是需要先提取出其中的结构化信息,再进行分析。

大数据的基础技术可以从IT领域借鉴到安防领域,具体包括如下这些技术:一、分布式文件系统,负责海量数据存储,将数据分散存储在多台独立的设备上,系统采用可扩展的体系结构,利用多台存储服务器分担存储负荷,利用元数据服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展;二、分布式数据库,面向列的实时分布式数据库,适合构建高并发低延时的在线数据服务系统,用于存储粗粒度的结构化数据;三、分布式计算,负责将一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果;四、全文检索引擎,负责对海量数据进行稳定、可靠、快速实时检索;五、内存计算,通过分布式的内存计算,能够对海量数据更加快速地分析处理;六、流计算,负责对流媒体数据进行分析处理。基于以上这些技术,能够对已结构化的数据进行快速处理,解决对海量数据处理效率上的问题。

然而,正如上面所说,安防行业中最多的数据不是结构化数据,而是非结构化数据,如何从这些非结构化数据中提取出结构化信息,是首先需要解决的关键点。在视频图像中可以提取的结构化信息包括如下内容:一、人、车、物的特征信息,人的特征信息包括性别、年龄段、身高、体型、肤色、是否佩戴眼镜、发型、服饰特征、携带物等,车的特征信息包括车牌号码、车牌颜色、车牌类型、车辆类型、车身颜色、车标、车上人员信息等,物体的特征信息包括物品颜色、形状、大小、纹理特征等;二、行为信息,如穿越警戒面、进入/离开区域、区域入侵、人员徘徊、人员聚集等。当提取出这些数据后,就可以进一步进行深入分析,如对车辆的轨迹分析,对人的异常行为分析。所以,智能分析技术在安防大数据中显得格外重要,是实现安防大数据的基础。

整合了大量的数据之后,就需要挖掘数据的深度价值。数据的真实价值就像海洋中的冰山,第一眼只能看到冰山一角,而绝大部分则是隐藏于表面之下。预测是大数据的核心价值所在,深度关联分析算法便是实现大数据价值的必要手段。数据分析算法就像是钻头,需要从大数据这座神奇的钻石矿中挖掘出真正的钻石。

上一页12下一页
中国数字视听网微信公众平台:
搜索“数字视听网”或扫描下面的二维码,关注官方微信平台,开启视听行业新闻资讯新旅程!
本文导航
明基
MAXHUB
快捷
产品关注排行
"扫一扫"关注我